

НАСОСЫ ЦЕНТРОБЕЖНЫЕ ДВУСТОРОННЕГО ВХОДА ТИПА 6НДВ ДЛЯ ПЕРЕКАЧИВАНИЯ НЕФТЕПРОДУКТОВ И АГРЕГАТЫ ЭЛЕКТРОНАСОСНЫЕ НА ИХ ОСНОВЕ

Назначение изделия

Насосы центробежные двустороннего входа для перекачивания нефтепродуктов и агрегаты электронасосные на их основе предназначены для перекачивания незагрязненных механическими примесями нефтепродуктов и воды с примесями нефтепродуктов. Содержание твердых включений в перекачиваемых средах не более 0,2% по массе и размером не более 0,2мм.

Показатели назначения насосов и агрегатов по перекачиваемым средам, температуре перекачиваемой жидкости, климатическому исполнению, классу установки, типу уплотнения и материалу проточной части приведены в таблице.

Насосы относятся к восстанавливаемым изделиям вида 1 ГОСТ 27.003-90.

Насосы и агрегаты разработаны с учетом требований безопасности, определяемых ОСТ 26-06-2028-96.

Таблица - Показатели назначения по перекачиваемым средам

Пер	екачиваемая среда	нефтепродукты	нефтепродукты и вода с примесью нефтепродуктов
ры лой	Вязкость, м ² /с (сСт);	100х10-6 м	2/c (100cСт)
Параметры перекачиваемой среды	Плотность, кг/м ³	7601000	
	Температура перекачиваемой жидкости	От 243 до 358 К (от минус 20 до 850С)	От 273 до 323 К (от минус10 до 850С)
	Температура вспышки, ⁰ С	от 23 до 61	более 61
взрывооп жидкости	я и группа пасной смеси паров с воздухом 51330.19-99)	категории IIA, IIB, группы Т1, Т2, Т3, Т4	T1 и не взрыво и пожароопасные смеси

E-mail: •à^@|ā*ãi[È;^|È*

Зона установки	B-la, B-lб, B-lг, B-lla	_
электронасоса	D 1a, D 10, D 11, D 11a	

Таблица - Показатели назначения по перекачиваемым средам (продолжение)

Перекачиваемая среда	нефтепродукты	нефтепродукты и вода с примесью нефтепродуктов
Климатическое исполнение и категория размещения ГОСТ 15150-69	Т, У2 и Т2	У3.1 и Т2
Материал проточной части	Сталь 20Л и 35Л ГОСТ 977-88	СЧ 20 ГОСТ 1412-85
Тип уплотнения вала (обозначение)	Двойное торцовое (ТД) или одинарное торцовое со вспомогательным (Т)	Одинарное торцовое со вспомогательным (T)

Структура условного обозначения насосного агрегата

Условное обозначение насоса (агрегата) при заказе, переписке и в технической документации должно быть:

Насос (агрегат) 6НДв-Бт-Е У2 ТУ3631-066-05747979-96,

где 6- диаметр напорного патрубка в мм, уменьшенный в 25 раз;

НД – насос двустороннего входа

в – высоконапорный;

Б –бензиновый;

т – одинарное торцовое уплотнение;

Е – стальной корпус;

6НДв-Бтд-Е У2 ТУ3631-066-05747979-96, то же, и с двойным торцовым уплотнением (тд).

6НДв-Бт У3.1 ТУ3631-066-05747979-96, то же, в чугунном корпусе и с одинарным торцовым уплотнением.

Для более полного удовлетворения требований заказчика в части обеспечения необходимых параметров предусмотрены подрезка рабочих колес и использование насосов при пониженной частоте вращения.

При поставке насоса с обточенными по внешнему диаметру рабочими колесами к обозначению типоразмера насоса добавляется индекс:

«а» - первая обточка рабочего колеса (диаметр колеса 380мм);

«б» - вторая обточка рабочего колеса (диаметр колеса 360мм)

E-mail: • à î d lãc * ã l l È l l l L

Технические характеристики

Таблица - Показатели назначения по параметрам в номинальном режиме

Наименование показателя	Величина параметра для насосов типа 6НДв-Бт			
Диаметр рабочего колеса (подрезка), мм	405	380 (a)	360 (б)	
Подача, м³/ч (м³/с)	320 (0,09)	300 (0,083)	275 (0,077)	
Напор, м	50	44	39	
Частота вращения,с ⁻¹ (об/мин)	24,2 (1450)			
Максимальная потребляемая мощность насоса, КВт	68	60	52	
Параметры энергопитания:	'	Переменный		
Род тока		220/380/660		
Напряжение, В		50		
Частота тока, Гц				

Примечания

1 Значения основных параметров указаны при работе насосов на воде с температурой 293К (20°C) и плотностью 1000 кг/м³.

При перекачивании насосом жидкостей с различными плотностями и вязкостью максимальная потребляемая мощность насоса соответственно меняется.

- 2 Отклонение напора по всему рабочему интервалу подач при изготовлении ±5% от номинального значения ,приведенного в таблице, при эксплуатации отклонение напора минус 10%.
- 3 Максимальная мощность насоса -величина справочная- и указана для максимальной подачи в рабочем интервале с учетом допустимых отклонений по напору и к.п.д.
 - 4 Давление на входе, не более:
 - для насосов с проточной частью из стали- $0.6 \text{ M}\Pi \text{a} (6 \text{кгc/cm}^2)$, для насосов с проточной частью из чугуна- $0.3 \text{ M}\Pi \text{a} (3 \text{кгc/cm}^2)$
- 5 По требованию заказчика допускается комплектация насосов двигателями соответствующей мощности на напряжение 6000В.

E-mail: • à î cO | ã; * ãå | [È | ^ | È *

Таблица - Показатели технической и энергетической эффективности

Наименование	Величина параметра для диаметров колес, мм		
показателя	405	380 (a)	360 (б)
К.П.Д. насоса, %	76	73	68
Утечка через каждое одинарное торцовое уплотнение,			
см ³ /ч (л/ч), не более	30 (0,03)		
Допускаемый кавитационный запас, м, не более	5,5	5,7	5,9
Масса насоса, кг	460		
Масса агрегата, кг, не более	Приведена в приложении В		
Габаритные размеры насоса, мм	Приведены в приложении Б		
Габаритные размеры агрегата, мм	Приведены в приложении В		

Примечания

- 1 Значение КПД приведено для оптимального режима, который находится в пределах рабочего интервала подач.
 - 2 Значение допускаемого кавитационного запаса приведено для номинального режима. Коэффициент кавитационного запаса 1,15.
 - 3 Допуск на массу+5%. Отклонение в противоположную сторону не регламентируется.

Устройство и принцип работы

Агрегат состоит из насоса 1 и приводного двигателя 2, установленных на общей фундаментной раме 3 и соединенных между собой при помощи упругой втулочно-пальцевой муфты 4 (приложение В).

Насос — центробежный двустороннего входа, горизонтальный с полуспиральным подводом жидкости к рабочему колесу и спиральным отводом.

Принцип действия насоса заключается в преобразовании механической энергии привода в гидравлическую энергию жидкости.

E-mail: •à^cO |ã* ã|[È |^|È*

Корпус насоса (рисунок 1) представляет собой стальную или чугунную отливку и имеет разъем в горизонтальной плоскости, проходящей через ось ротора.

Всасывающий и нагнетательный патрубки насоса расположены в нижней половине корпуса, благодаря чему возможна разборка насоса без отсоединения трубопроводов и снятия двигателя.

Размеры всасывающего и напорного патрубков насоса приведены в приложении Б.

Крышка корпуса 5 продолжает конфигурацию каналов корпуса 9.

В верхней части крышки корпуса предусмотрено отверстие M16x1,5, закрытое пробкой 4, для присоединения вакуумнасоса или подключения системы вакууммирования.

В спиральной части крышки насоса предусмотрены два отверстия М16х1,5 для присоединения трубопроводов подачи перекачиваемой жидкости к одинарным торцовым уплотнениям. В случае комплектации насосов двойным торцовым уплотнением эти отверстия закрыты пробками.

В корпусе насоса имеются шесть отверстий М16х1,5, закрытые пробками:

четыре (в зоне торцового уплотнения и на патрубках насоса) –для слива остатков жидкости при длительной остановке насоса;

два (на фланцах патрубков насоса) – для установки манометра и мановакуумметра.

Для отвода утечек в ваннах корпуса насоса выполнены два отверстия M24x2.

Ротор насоса 1 приводится во вращение электродвигателем через соединительную втулочно-пальцевую муфту. Опорами ротора служат радиальный двухрядный сферический и радиально-упорный двухрядный подшипники, размещенные в корпусах подшипников 13, установленных в корпусе насоса

Радиально-упорный двухрядный подшипник установлен со стороны «муфтового» конца вала.

Охлаждение подшипников обеспечивается подводом охлаждающей жидкости к корпусам подшипников через отверстия M24x2.

Тел.: (08677) 3-17-58; E-mail: <u>• à^ cO [ãç* ãål[і‡ ¦^|іт̀</u>

6

Направление вращения ротора левое (против часовой стрелки), если смотреть со стороны привода. По просьбе потребителя возможно изготовление насоса с правым вращением ротора (по часовой стрелке).

Рабочее колесо 3 – двустороннего входа, что позволяет в основном уравновесить осевые силы. Остаточные осевые усилия воспринимаются радиально-упорным двухрядным подшипником.

На рабочем колесе установлены защитные кольца.

В корпусе насоса установлены уплотняющие кольца 2, защищающие корпус и крышку корпуса от износа и уменьшающие перетечки жидкости из напорной полости во всасывающую.

Для предотвращения протечек жидкости по валу в насосе устанавливаются торцовые уплотнения 12 (одинарные торцовые уплотнения со вспомогательной манжетой или двойные торцовые уплотнения).

Втулки торцового уплотнения уплотнены по валу кольцом резиновым и зафиксированы от перемещения винтом.

Узел уплотнения закреплен в корпусе четырьмя шпильками 10 и уплотнен по корпусу резиновым кольцом 11.

Разрез ротора насоса приведен на рисунке 2.

Одинарное торцовое уплотнение вала (рисунок 3) выполнено в виде единого уплотнительного модуля, состоящего из собственно одинарного торцового уплотнения 5 ,установленного на втулке 1 в стакане 4, который закрыт крышкой 3. В крышке установлена манжета 2 с минимальным зазором по валу.

Для исключения подсоса воздуха и для охлаждения торцовых уплотнений обеспечивается подвод перекачиваемой жидкости от спиральной камеры насоса.

В стакане выполнены два отверстия М16х1,5,(закрытые резиновыми пробками 7), для обеспечения возможности подключения смыва или продувки полости между основным и дополнительным уплотнениями, а также для возможного подключения электроконтактного манометра (ЭКМ).

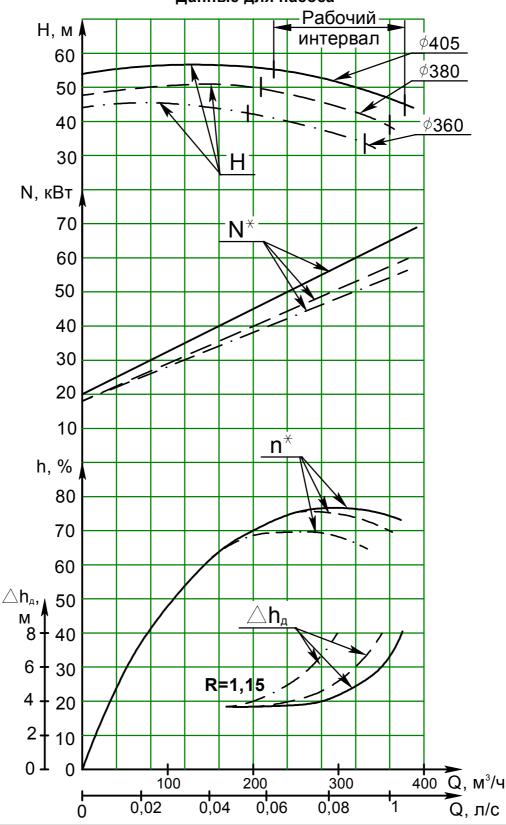
Тел.: (08677) 3-17-58; E-mail: <u>•à^ сО |ãç* ãål[і‡¦^|іÈ</u>° В случае отсутствия смыва или продувки для увеличения ресурса работы манжеты рекомендуется полость между основным и дополнительным уплотнениями заполнить на 1/2 любой консистентной смазкой.

При подключении ЭКМ при стабильной работе уплотнения (без превышения предельно допустимой концентрации) утечки проходят по валу вдоль манжеты и отводятся в сборник. В случае выхода из строя основного уплотнения давление в полости между основным и вспомогательным уплотнениями повышается и ЭКМ дает сигнал на отключение насосного агрегата.

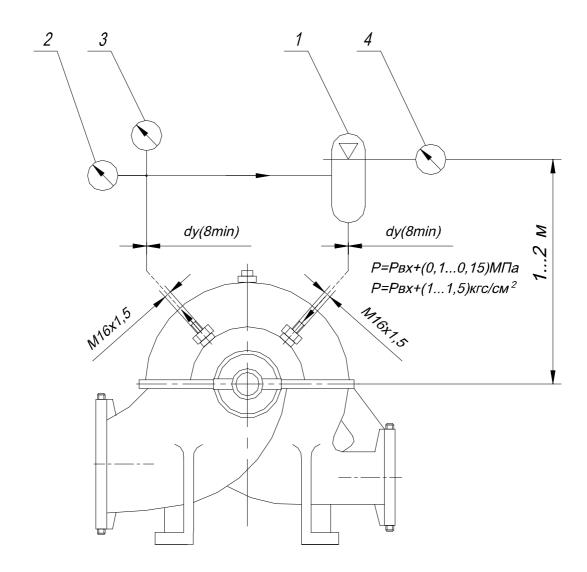
Двойное торцовое уплотнение (рисунок 4) состоит из двух одинарных торцовых уплотнений 1, собранных на втулке 2 в стакане 3, закрытом крышкой 4.

Гидравлический затвор и охлаждение двойного торцового уплотнения обеспечивается посредством подвода нейтральной жидкости к торцовому уплотнению.

Для отделения перекачиваемой среды от внешней среды и отвода тепла трения через отверстия M16x1,5, закрытые пробками 7, обеспечивается циркуляция затворной жидкости.


Параметры затворной жидкости приведены в таблице 3.

Систему подачи затворной жидкости в торцовое уплотнение выбирает и устанавливает потребитель.


Простейшая схема подачи затворной жидкости в случае использования термосифона приведена на рисунке 5.

Приложение А (справочное)

Характеристика насоса (агрегата) 6НДв-Бт, 6НДв-Бт-Е n=24,2c⁻¹(1450 об/мин), жидкость-вода p=1000кг/м³ *Данные для насоса

Тел.: (08677) 3-17-58; E-mail: <u>•à^d () [ãc* ãå![È ¦^|È</u>

- 1. Гидроаккумулятор, вмещающий 10-15литров воды или минерального масла вязкостью до 2·10 м²/с (20сСт) с содержанием твердых включений не превышающих по массе 0,05% и размеру более 0,2 мм.
- 2. Термометр.
- 3. Манометр.

Copyright 2002© Livgidromash

4. Уазатель уровня.

Рисунок 5 - Схема подачи затворной жидкости к двойному торцовому уплотнению с использованием термосифона.

Тел.: (08677) 3-17-58; E-mail: <u>•à^Q [ã;* ãil[Ё!^|Ё`</u>

Lω 092 Схема спрансажи 2986-2 572.1.1 E70 (Kasa) 81/ 0/: Y Габсантный чертеж насасс *39*i θ - θ Грилажение Б irfammenenee! 833 ĻŊ 97.76 7712 *LŦŊŊ*ϯ *፫*Ŧ<u>ናጋ/.</u>

Тел.: (08677) 3-17-58; E-mail: <u>•à^ cO [ã* ãå¦ [℟ ¦^|È</u> ́

45 Приложение В (абязательное) Габаритный чертеж агрегатав Щ

574

Copyright 2002© Livgidromash

5074

Тел.: (08677) 3-17-58; E-mail: <u>sbyt@livgidro.orel.ru</u>